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Abstract— In multimedia information retrieval, most classic
approaches tend to represent different modalities of media in
the same feature space. With the click data collected from
the users’ searching behavior, existing approaches take either
one-to-one paired data (text–image pairs) or ranking examples
(text–query–image and/or image–query–text ranking lists) as
training examples, which do not make full use of the click data,
particularly the implicit connections among the data objects.
In this paper, we treat the click data as a large click graph,
in which vertices are images/text queries and edges indicate the
clicks between an image and a query. We consider learning a
multimodal representation from the perspective of encoding the
explicit/implicit relevance relationship between the vertices in
the click graph. By minimizing both the truncated random walk
loss as well as the distance between the learned representation of
vertices and their corresponding deep neural network output, the
proposed model which is named multimodal random walk neural
network (MRW-NN) can be applied to not only learn robust
representation of the existing multimodal data in the click graph,
but also deal with the unseen queries and images to support cross-
modal retrieval. We evaluate the latent representation learned
by MRW-NN on a public large-scale click log data set Clickture
and further show that MRW-NN achieves much better cross-
modal retrieval performance on the unseen queries/images than
the other state-of-the-art methods.

Index Terms— Cross-media search, click log, latent represen-
tation, deep learning.

I. INTRODUCTION

W ITH the rapid growth of multimedia data, cross-media
retrieval is imperative to many applications of practical

interest, such as finding a set of images that visually best illus-
trate a given text query. However, the semantic-gap between
the low-level features and high-level semantics as well as the
heterogeneity-gap between multimodal data have been widely
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Fig. 1. An example of the subgraph of the click graph from a commercial
image search engine [2]. Vertices are queries or images and the edges indicate
the click count of the image given the text query.

understood as a fundamental barrier to successful cross-media
retrieval. To reduce these gaps, a typical way is to map the
multimodal data into a common semantic feature space, and
then the retrieval procedure can be conducted in the newly
mapped space. For example, automatic annotation translates
the images from the image space into the text space to support
the image retrieval from text queries.

In recent years commercial image search engines, such as
Google1 and Bing,2 record the users’ behavior from their
queries and clicks, with little overhead [1]. The objective
of recording click logs is to help improve the performance
in image search engines by leveraging click data aggregated
across users and sessions [2]. The click data is usually stored
in a large table, with each line containing a triad (D, Q, C).
A triad (D, Q, C) means that the image D was clicked C times
in the search results of textual query Q. The click data can be
also viewed as a bipartite graph, with two types of vertices
(queries and images) and the edges weighted according to
the total number of clicks from all the users. An example
of a subgraph of the click graph is depicted in Figure 1.
Intuitively, the more clicks, the more relevant the image w.r.t.
the query. Therefore, the query-image pairs can be viewed as
“soft” relevance judgments to help bridge the heterogeneity-
gap. Compared with the other types of training data such as

1https://images.google.com/
2http://www.bing.com/images/
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manually labeled image datasets like ImageNet [3] and text-
image symbiosis datasets like Wikipedia feature articles [4],
the click data has several advantages:

1) users can quickly glance at the returned image thumb-
nails before they click, and thus the click logs have
a relatively low level of noise: it was estimated that
about 84% of the images were relevant among all the
clicked images [5];

2) the high-quality click data is harvested by the collective
intelligence of the users with no extra effort from the
users;

3) the click data from commercial search engines increases
all the time by the use of search engines, and can cover
all the query intents from the users, including the new
emerging topics and concepts.

Therefore, the click data has attracted a great deal of
research devoted to the development of algorithms for learning
an optimal common representation of different modalities.
According to the difference on modeling the click data, the
existing approaches can be categorized into two classes. One
class of the approaches (e.g., [6], [7]) models the click data
as a set of (weighted) query-image paired data, of which the
training objective is that a more clicked query-image pair in
the mapped latent space should be closer. The other class
of the approaches is based on the techniques of learning
to rank (e.g., [8], [9]), which model the click data as a set
of cross-modal ranking examples (here one text-query-image
ranking example consists of a text query and its corresponding
ranked images). Given the training ranking examples, these
approaches tend to learn a common latent space in which the
distance of the mapped images to the query is in accordance
with their relevance to the query.

However, all the aforementioned approaches only explore a
limited part of the click data, i.e., the explicit link structure
of the click graph, in which the implicit relationship among
the vertices in the click graph is ignored. For example, two
images both clicked by the same query may have both high
visual similarity and high semantic similarity; two queries that
click the same image may be highly related to each other
(e.g., “labradoodle dog” and “puppy”). We argue that such
approaches disregarding the implicit link structure of the click
graph lead to an inferior performance on learning the common
latent representation of the multimodal data.

We focus on learning the common latent representation of
multimodal data in this paper. Moreover, we aim to learn the
mapping to the latent space such that cross-modal retrieval can
be performed, considering the utilization of the multimodal
click data. The learned space is constrained to be a low-
dimensional continuous space since the intrinsic dimension-
ality of a semantic space is usually much lower that that
of original feature space. The latent representations should
encode the relevance relation between the queries and the
images accurately. That is, the indirect relationship between
the vertices in the click graph should also be considered in
learning the latent space such that the learned representation
can capture more accurate semantics of both queries and
images. More importantly, the learned model should be also
generalized to new queries and new images such that the

model can be applied to not only the training data but also
the unclicked / emerging queries and images.

Our work extends DeepWalk proposed in [10]. In gen-
eral, we seek to bridge the gap between multimodal click
graph modeling and deep neural networks. By modeling the
multimodal click graph by a stream of short random walks
and adapting techniques of deep neural networks, we present
an end-to-end solution, named Multimodal Random Walk
Neural Network (MRW-NN), that takes a multimodal click
graph as input to learn the common latent representation of
text and imagery. The overview framework of MRW-NN is
depicted in Figure 3. Specifically, each vertex in the click
graph is associated with two representations: one (the social
representation) encoding its context (neighborhood similarity)
in the graph, and the other one (the internal representation)
representing the semantics of the vertex by analyzing its
content with deep neural networks. By optimizing both the
truncated random walk loss as well as the distance between
the social representation and the internal representation of
the vertices, the social representations of the vertices and the
parameters of the deep neural networks are learned. Thus the
proposed model not only captures more accurate semantics of
the training queries and images, but also generalizes to the
unseen queries and images better. When used for cross-modal
retrieval, MRW-NN simply outputs the latent representation
of queries and images by the deep neural networks, with then
the images are ranked by their distance from the query in the
latent space.

The contribution in this work is summarized as follows:
1) Not only the proposed model learns high-level feature

representation for data objects with different modalities
(which reduces the semantic gap), but also the learned
representation encodes the direct and indirect relevance
relationship among the vertices in the click graph (which
reduces the heterogeneity gap).

2) By constraining the distance between the latent rep-
resentation of the vertices and their neural network
output, robust high-level latent representation is learned
(for example, the visually similar images are mapped
closely). More importantly the loss is back-propagated
to train the modality-specific neural networks with end-
to-end training, by which the deep neural networks
are optimized for encoding the relevance relationship
between text and imagery, thus benefiting for perform-
ing cross-modal retrieval on the unseen queries and
images.

3) We also conduct an empirical study on a commercial
image search engine click logs with 11.7 million queries
and 1 million images. It is observed that the proposed
model has the new state-of-the-art cross-modal ranking
performance.

The rest of this paper is organized as follows.
In Section II, we introduce related work. In Section III,
we describe the method in detail and show its feasibility.
We analyze the learned latent representation and compare
the proposed model with the existing cross-modal ranking
approaches on the real-world multimodal click dataset in
Section IV. Conclusions are given at the end.
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II. RELATED WORK

In this section, we discuss the related work on the learning
of multimodal click graph.

There has been a great deal of research denoted to the
development of algorithms for learning an optimal com-
mon representation of different modalities. These popular
approaches map the data of multiple modalities into a common
space such that the distance between two similar objects is
minimized, while the distance between two dissimilar objects
is maximized. For example, Rasiwasia et al. [4] presents
that modeling the correlations between modalities is more
effective in feature spaces with higher levels of abstraction.
The scalability of incorporating new semantic concepts into
the semantic space is studied in [11], which allows the
updated embedding function to be applied to dynamic image
repositories. Furthermore, since there are a wide variety of
visual features to describe an image (e.g., color, texture,
shape and spatial layout), graph-based feature fusion techni-
ques ( [12], [13]) which explore the complementation of
multiple features during the learning process are also
investigated, showing better performance than that of
using concatenated high-dimensional global feature vector
(early fusion) or applying different features to learning
algorithms and then fusing the results (late fusion) [14].

To learn the representation of the vertices in the multimodal
click graph, a typical way is to first extract pairs of clicked
query-image data from the graph, and then to take the paired
data as the input to optimize the specific objective functions.
As one of the most popular approaches, Canonical Correlation
Analysis (CCA) [15] and its extensions (e.g., Deep CCA [6]
and Generalize Multiview Analysis [16]) learn the (non)linear
transformation that projects the query textual semantics and
image content into the common subspace respectively, by max-
imizing the correlations between the two variables in the latent
space. To utilize the information of the click count, the train-
ing of Click-through-based Cross-view Learning (CCL) [7]
is performed simultaneously by minimizing the distance
between query and image mappings in the latent subspace
weighted by their clicks, and preserving the structure rela-
tionships between the paired training examples in the original
feature space. The underlying assumption of CCL is that the
higher the click number, the smaller the distance between
the query and the image in the latent space. Furthermore,
the similarity between examples in the original space can be
preserved in the learned latent subspace.

Motivated by the fact that learning to rank methods have
the intrinsic power for document retrieval, another category of
methods views the click data as a set of cross-modal ranking
examples. These methods are based on the techniques of learn-
ing to rank and take the ranking examples as the pairwise (or
listwise) input to optimize a certain ranking loss. PAMIR [8]
is the first attempt to address the problem of ranking images
by text queries. PAMIR formulates the cross-modal retrieval
problem in a way similar to that of RankSVM and derives an
efficient training procedure by adapting the Passive-Aggresive
algorithm. A model named DeViSE [17] has a similar rank-
ing loss function to that of PAMIR, while the embedding
of multimodal data is performed by deep neural networks.

The goal of PAMIR and DeViSE is to minimize the average
number of the inversions in ranking; that is, the more clicked
images should be ranked higher than the less clicked ones.
Unlike the above pairwise approaches, the listwise approaches
notice that the ranking is a prediction task on a list of
documents and take the ranking lists as the training instances.
These methods explicitly minimize the ranking loss of a whole
permutation listwise, not pairs of items. The authors of [18]
propose a general cross-modal ranking algorithm to optimize
the listwise ranking loss with a low rank embedding. The
embedding space of queries and images is discriminatively
learned by a structural large margin learning for certain rank-
ing criteria (e.g., MAP) directly. Noticing that the click graph
can be viewed as not only text-query-image ranking exam-
ples but also image-query-text ranking examples, Bi-CMSRM
proposed in [19] takes bi-directional ranking examples into
account, such that two directions of retrieval are optimized
simultaneously, yielding a better representation for multimodal
data.

Different from the aforementioned methods that consider
only direct connections in the click graph, some approaches
consider the sparsity problem of the click graph and try
to model the implicit connections among the vertices.
These approaches are usually based on the random walk
process and obtain a probabilistic distribution over documents
describing how likely they are relevant to a given query.
Craswell et al. [20] propose a Markov random walk model
to a large click log for finding relevant documents, including
those that as-yet unclicked for a query, without analyzing the
query content or image content. The drawback of the model
is that it cannot be applied to the new emerging queries or
images. Given a text query, the visual link structure among the
related images is considered in the so-called visual reranking
approaches (e.g., [13], [21], [22]) which help re-rank the initial
returned list to make a better relevance score. Assuming that
the majority of the related images are relevant to the query, the
transition probabilities among the images are first computed
by their visual similarities, and then the PageRank algorithm
is applied to the image-image graph, assigning the relevance
score to an image based on its connections to others. The
images found to be “authorities” are chosen that answer the
query well. We note that though these reranking approaches
cannot deal with the heterogeneity-gap of the multimodal click
graph, they can be incorporated with the proposed MRW-NN
model to rerank the returned ranking result, which is out of
the scope of the presented work.

On the other hand, deep neural networks (DNNs) that learn
a transformation of a low-level representation to a high-level
representation have shown their powerful ability to the tasks
of learning multimodal representation. The authors of [23]
propose a multimodal Deep Boltzmann Machine for learning
a generative model of data that consists of multiple input
modalities. Noting that the multimodal DBM is trained with
paired multimodal training data, the model works by learning
a joint representation over the space of multimodal inputs,
which is useful for cross-modal retrieval. Methods like [24]
based on autoencoders and [6] based on CCA have similar
incentives. Some other DNNs are based on the cross-modal
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ranking examples which are trained to learn representation
that minimizes a certain ranking loss. The ranking loss is
back-propagated into the visual model and the textual model
to fine-tune their representations. For example, DeViSE [17]
is optimized for the pairwise ranking loss and
CMRNN [25] for the listwise ranking loss. The visual
model and the textual model in these methods are usually
adapted from the promising deep neural networks, like
CNN [26] for image representation and word2vec [27] for
word representation. The proposed MRW-NN model can be
integrated with the deep structure of these methods, while it
remains an open question in our further work whether there
is a specific (and better) deep structure for modeling the text
queries and the images in the click graph.

Our work is closely related to DeepWalk [10] which first
suggests the use of random walks to learn latent representation
on the social community graph. In this work, we constrain
ourselves to learn the latent representation of the multimodal
click graph. The main goal of the proposed model is to perform
cross-modal ranking, which differs from that of DeepWalk
that aims to learning the latent representation for classifying
the static members of a social network. Specifically, our work
differs from [10], in which not only the relationship among the
vertices in the graph is encoded in the latent space, but also
the proposed model is required to generalize for the unseen
queries and images (those not involved in the training click
graph) by learning deep neural networks that transform the
unseen data from their original feature space to the common
space to support cross-modal retrieval.

III. MRW-NN MODEL/ALGORITHM

We consider the problem of multimodal representation
learning. The proposed method MRW-NN learns a general
multimodal representation from the training click graph in the
sense that it maps the two types of multimodal data into the
same common space in which the cross-modal retrieval can
be performed.

A. Notation

Denote m as the dimension of the image feature space
(e.g., the number of pixel intensity levels × the number of
pixels) and n as the dimension of the text feature space
(e.g., vocabulary size of bag-of-words). The dimension of
the latent semantic space is denoted as d . In this work, the
click data is viewed as a bipartite graph G with vertices D
denoting the set of images and vertices Q denoting the
corpus of text queries. More formally, let G = (V , E), where
V = {D, Q} are the vertices of the click graph, and E denoting
the undirected edges, E ⊆ (D × Q). The weight of an edge
ei, j = (Di , Q j ) is assigned with the click count representing
how many times image Di is clicked for the text query Q j

(maybe by different users at different times). For clarity, we
list important notations and definitions throughout this paper
in Table I.

B. Task: Learning Representations and Mapping Functions

The click graph consists of objects from multiple modalities
that come from different feature spaces. We seek to perform

TABLE I

NOTATIONS AND DEFINITIONS

cross-modal ranking over the new images and queries that
are not involved in the training click graph. Rather than
knowing what the representations � of the vertices in the
click graph are, we are more interested in how the vertices
are transformed to the latent representation from their original
feature representation. Thus, one of the main goals is to learn
the mapping functions fI : Rm �→ R

d and fT : Rn �→ R
d that

map the images and the queries to the common latent space,
respectively.

We argue that an appropriate multimodal modeling approach
over the click data should have the following characteristics:
• Click Aware: The more the explicit clicks between a query

and an image, the closer their latent representation should
be. The mapped representation should also encode the
implicit connections between the vertices in the click
graph. In other words, the distance of the vertices in
the latent space should represent the semantic similarity
between them.

• Intra-modal Consistency: While there’s no explicit con-
nection between the intra-modal nodes in the bipartite
click graph, the visual similar images should mapped
closely, as well as the queries that have similar semantics.

• Generalization Aptitude: It is insufficient to learn latent
representation for the present members of the click graph
only and the proposed modal should be able to perform
cross-modal ranking in the future. Most importantly,
the mapping functions should generalize for the unseen
images and emerging queries well. To support cross-
modal retrieval, given an image p ∈ R

m and a text
query t ∈ R

n , we consider their relevance measured
by the cosine similarity of the two mapped vectors in
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Fig. 2. (A) the image mapping function f I is composed by a deep CNN
model with the softmax layer replaced with a full-connected layer; (B) a
query’s representation fT is the summation of the representations of the
contained keywords. Both the parameters of f I and fT are learned from
the training click data.

the d-dimensional space:

Rel(p, t) = fI (p)� fT (t)

‖ f I (p)‖ ‖ fT (t)‖ (1)

which is commonly used to measure the matching
between textual vectors [28] ( f I and fT are the mapping
functions for images and textual queries respectively,
which we will discuss shortly).

where we also constrain the learned representations to be
continuous and low dimensional for robust statistical learning.

The hypothesis of the mapping functions in this work is
depicted in Figure 2. Inspired by the recent advances of deep
neural networks for learning representation, we employ the
architecture of the deep convolutional neural network (DCNN)
proposed in [26] for image modeling (however our work
could be also integrated with any powerful DCNNs, e.g., a
16-layer VGGNet model [29]). The DCNN model consists
of several convolutional filtering, local contrast normalization
and max-pooling layers, followed by several fully connected
neural network layers. The softmax prediction layer is replaced
with a linear transformation that maps the 4,096-dimensional
representation into the latent d-dimensional representation at
the top. Thus, the images are fed through the visual model to
be represented as real-valued feature vectors. For query model-
ing, we adapt the idea of learning distributed representations
of words: each word in the vocabulary is embedded into a
vector lookup table in such way a d-dimensional distributed
representation is associated with each word, which is to be
learned. Then a query with multiple words is represented as
the summation of the corresponding word vectors. Therefore,
the images and the queries can be both represented in the
d-dimensional latent space.

The rest is to learn the parameters of both the visual model
and the word vectors from the training click data to satisfy the
above requirements. For simplicity, we denote the mapping
function as f (omitting the subscript of fI and fT ) when it
is capable of being applied to the queries or the images.

C. The Proposed Model

To meet the above characteristics, one straightforward
consideration is a two-stage mechanism: firstly get the ver-
tices’ social representation with methods like Lapacian Eigen-
map [30] or DeepWalk [10] without considering the content
of the queries and images; and then train individual neural
networks separately for different modality with the loss func-
tion as Euclidean distance between the neural network output
and the previous learned latent representation. However, this
cannot guarantee to satisfy all the above requirements, since
two visual similar images or two semantic queries may be
mapped far to each other in the previous step, resulting in the
slow convergence of the training of deep neural networks as
well as the limited generalization performance in cross-modal
retrieval.

Instead, we propose an end-to-end learning solution and
formulate our objective in the view of well-known “empirical
risk + regularization” framework.

First consider capturing the structure of the click graph only,
i.e., learning the latent representation of the vertices in the
click graph without analysis of their content. Inspired by the
DeepWalk model [10], the representation of the vertices of
the click graph is learned from a stream of truncated random
walks, using optimization techniques originally designed for
language modeling. In this way, vertices which have similar
neighborhoods will acquire similar representations.

Denote a random walk rooted at vertex v ∈ V as Wv . It is a
stochastic process with random variables v1, v2, . . . , vk such
that vk+1 is a vertex chosen at random from the neighbors
of vertex vk . The random walk is performed on the weighted
bipartite graph. The click count (i.e., the weight of an edge)
serves as an important role in the click graph which measures
the relevance between a query and an image. The transition
probability Pi,i+1 (the probability of moving from vertex vi

to vertex vi+1 in the Markov random walk) is defined as

Pi,i+1 = ei,i+1
∑

j ei, j
(2)

and thus, a more clicked vertex is more likely to be chosen.
Then each walk sequence is treated as a sentence (thus a

vertex as a word) and the likelihood of observing the neighbors
of vertex vi in the walk is maximized (as an analogy to the
context of a word in a sentence). The proposed optimization
problem is given as

max
Φ

log Pr({vi+1, . . . , vi+w} |vi ) (3)

where w is the predefined window size which restricts the
size of the random walk context. Like the SkipGram model,
the ordering constraint is removed and the objective is trans-
formed to:

max
�

∑

1≤ j≤w

log Pr(vi+ j |vi )

with Pr(vi+ j |vi ) defined using the softmax function:

Pr(vi+ j |vi ) = exp(�(vi+ j )
��(vi ))

∑

v
exp(�(v)��(vi ))

, 1 ≤ j ≤ w (4)
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Fig. 3. In this work, each vertex v in the click graph is associated with two representations: one (the social representation �(v)) encoding its context
(neighborhood similarity in its vicinity) in the graph, and the other one (the internal representation f (v)) representing the semantics of v by analyzing its
content. The proposed method MRW-NN consists of two stages in the training process: (1) first generate random walk paths with transition probability Pi,i+1
defined in Eq. (2) on the click graph; (2) given walk paths, the proposed method attempts to minimize the random walk error as well as the difference between
the learned representation �(v) and the modality-specific neural network output f (v). As is depicted above (with the window size w = 2), the model considers
both the explicit and implicit connections among the vertices. Vertices with the same color have the same semantics. The random walk loss and the Euclidean
loss are back-propagated to train the parameters of the visual mapping function f I , the textual mapping function fT , and the latent representation �. In the
prediction process, the learned f I and fT are utilized to perform cross-modal retrieval. In this Figure, (a),(b) and (c) are training process while (d) is the
prediction process. It should be noted that f I , fT and � are trained over the training set and utilized for the test data.

where �(v) denotes the social representation of the vertex v
that captures neighborhood similarity and encodes social rela-
tions of v in a continuous space, which is represented by a
row in a |V | × d matrix of free parameters. Solving the Opti-
mization Problem (3) will assign those vertices which have
similar neighborhoods with similar social representation �
(refer to [10] and [27]). The full softmax can be efficiently
approximated with Negative Sampling or Hierarchical
Softmax [31].

Unlike DeepWalk that computes the vector representation
of both a vertex and its “context”, we define Pr(vi+ j |vi ) as
follows which does not distinguish the representation of a
vertex and its “context”. Here we regard a vertex’s “context”
as the vertex itself, since we find that this constraint not only
is particularly desirable for cross-modal retrieval (recalling
that the relevance scoring function in Equation (1)), but also
reduces the complexity of the model.

The proposed model is required to maximize the probability
of observing only vertices appearing to the right side of the
given vertex in the random walk, rather than that appearing to
both sides in the DeepWalk model (refer to Equation (3)).
We note that this is equivalent to the original strategy of
DeepWalk by not distinguishing the representation of a vertex
and that of its “context” and approximating Equation (4) with
Negative Sampling. This is a natural way to model the random
walk process and reduces the computation cost by half.

More formally, the procedure is as follows: given a click
graph with |V | vertices, for each vertex v, a Markov random
walk Wv is performed on the click graph started at v with fixed
length L; the transition probability is defined in Equation (2).

The objective is to maximize the likelihood of observing the
walks:

max
�

∑

v∈V

∑

vi∈Wv

∑

1≤ j≤w

log Pr(vi+ j |vi ) (5)

which serves as the empirical risk term in the loss function.
Second, we consider analyzing the content of the vertices.

Recall that the regularization technique is used to control the
over-fitting phenomenon, which involves adding a penalty term
to the error function. From a Bayesian point of view, many
regularization techniques correspond to imposing certain prior
distributions to the model parameters, e.g., L2 regularization
assumes a Gaussian prior with zero mean [32]. The parame-
ter � to learn in Equation (5) is the latent representation of
the queries and the images in the click graph. As is discussed
above, the visually similar images or the semantic similar
queries should be mapped closely. Thus, we would like to add
a prior on � which depends on the content of the vertices and
the mapping function, resulting in the following regularized
optimization problem:

min
�, f

∑

v∈V

∑

vi∈Wv

∑

1≤ j≤w

− log Pr(vi+ j |vi )

s.t. ‖�(v) − f (v)‖2 ≤ C, v ∈ V (6)

where C ≥ 0 controls the trade-off between the random walk
error and the regularization penalty and f is a (non)linear
mapping function that maps a vertex from its original feature
space to the latent semantic space by analyzing its content.
Ideally for any vertex v, the social representation �(v) and the
internal representation f (v) would be the same in the semantic
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space, since it is the content of the vertex that determines the
context of the vertex in the click graph (e.g., to be clicked
or not, by a specific text query). While in the case that the
click graph is very noisy, C > 0 allows a tolerance of click
noise (e.g., very strange images clicked by mistake) and helps
to generalize. By solving the Optimization Problem (6), the
parameters of the visual mapping function f I , the textual
mapping function fT , and the latent representation � can be
obtained. We also require f to be “smooth” such that two sim-
ilar intra-modal vertices are mapped together closely (which
is not presented in the regularized optimization problem for
simplicity).

We reiterate here that Equation (6) is attractive to deal with
the clicked data rather than other data, since a random walk is
generated on the click graph started at any vertex v, the social
representation of v (e.g., �(v)) and the internal representation
of v (e.g., f (v)) would be the same in the semantic space due
to the enforced regularized term.

We discuss two special cases of the regularized
Optimization Problem (6) here. In the case of C = +∞, the
optimization problem is (almost) equivalent to that of the
DeepWalk model which only learns the latent representation
of the vertices and ignores the content of the vertices. In
the other case of C = 0, we get the following interesting
optimization problem:

min
f

∑

v∈V

∑

vi∈Wv

∑

1≤ j≤w

− log P̄r(vi+ j |vi ) (7)

where P̄r(vi+ j |vi ) = exp( f (vi+ j )
� f (vi ))∑

v
exp( f (v)� f (vi ))

, which means that

the latent representation should be exactly the output of the
mapping function. The Optimization Problem (6) can be also
viewed as the slack version of the Optimization Problem (7).

D. Algorithm and Implementation

To solve the regularized optimization problem (6), the gen-
eral optimization procedure of MRW-NN alternates between
two steps, one generating random walks and the other updating
the parameters of f I , fT and �, as listed in Algorithm 1. The
procedure runs at most γ epochs over the training data. At the
start of each epoch, a random ordering of all the vertices is
performed so as to speed up the convergence of stochastic
gradient descent. The random walk Wvi starting at vertex vi

samples a vertex from the neighbors of the last visited vertex
with the transition probability defined in Equation (2), until
the maximum length L is reached.

Given a walk sequence, the representation �(v) is first
projected onto the set

B( f (v), C) = {x : ‖x − f (v)‖2 ≤ C}
where B is the candidate set that satisfies the regularization
constraint in Optimization Problem (6). Specifically, the pro-
jection is obtained by

�(v)← f (v)+ (�(v)− f (v))·min{1,
C

‖�(v) − f (v)‖} (8)

Then the SkipGram algorithm is used to update these
representations �(v) in accordance with the objective function

Algorithm 1 Multimodal Random Walk Neural Network
Model (MRW-NN)

Algorithm 2 SkipGram(�,Wv ,w)

in Equation (5), as listed in Algorithm 2. We use Negative
Sampling to approximate the softmax likelihood function (4),
with J (�) replaced with

−(log σ(�(u j )
��(vi ))

+
R∑

r=1

Eur∼P(v)[log σ(−�(ur )
��(vi ))])

where R is the number of randomly selected negative samples
and P(v) is the probability of vertex v appearing in a random
walk.
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TABLE II

THE STATISTICS OF CLICKTURE DATASET

Then the parameters of the mapping function are updated
by the back-propagation algorithm with the top derivative of
the regularized term as � = f (v) −�(v).

The code is implemented upon Caffe [33] and its MATLAB
interface. To employ the computation capabilities efficiently,
we use the data parallelism training. Each mini-batch consists
of 200 random walks of length L. In the training period of a
mini-batch, the negative samples of a vertex in a given walk
are obtained from the vertices appearing in the other walks.

IV. EXPERIMENTS

The main goal of the experiments is to evaluate the
effectiveness of the learned representation and the mapping
functions by the proposed MRW-NN model. To show its
competitive performance, MRW-NN is compared with the
other state-of-the-art approaches for cross-modal retrieval.

A. Dataset

To the best of our knowledge, the Clickture dataset [2]
is the only public, large-scale multimodal click log dataset,
which is collected from one year click-through data of one
commercial image search engine. To make our experiments
reproducible and comparable, we conduct the experiments on
the Clickture dataset. The statistics of the Clickture dataset is
shown in Table II. The dataset comprises two parts, i.e., the
training and development (dev) sets. The training set consists
of 1 million images and 11.7 million unique queries. The
click count between an image and a query is summed from
different users at different times. Among all the image-query
pairs, there are 23.1 million of them with click count equal
or more than 1. Figure 1 shows a few exemplar images with
their clicked queries and click counts in the Clickture dataset.
It is worth noting that there is no any other information
(e.g., user information, surrounding text and time stamp of
click) provided in the Clickture dataset.

In the dev dataset, there are 79,926 query-image pairs
generated from 1,000 queries, where each image to the cor-
responding query is manually annotated on three relevance
measurement: Excellent, Good, and Bad. In the experiments,
the training set is used for learning the mapping functions,
while the dev set is used for performance evaluation.

B. Experimental Settings

1) Parameter Tuning: For the proposed MRW-NN,
the parameters to adjust are respectively the learning rate,

the dimensionality of the latent space d , the input window
size w, the length of walk path L, and the trade-off C between
the empirical risk and the prior of Optimization Problem (6).
Empirically, d is set to be a multiple of 32 (the size of GPU
warp). Some parameters should be fixed during the training
procedure like the dimensionality of the latent space d , while
others can be adjusted (or better to be adjusted) like the
learning rate. Many choices are almost equally as good; we
end up with a particular choice of parameters with d = 128,
w = 2, L = 10, C = 0.0001.

2) Neural Network Settings: We use the AlexNet model
previously trained on ILSVRC 2012 [26] to initialize the
image-specific neural network with the parameter of the last
linear transformation layer sampled from Gaussian distribution
N(0, 0.012). The query-specific word vector lookup table of
size 128 × 81386 is initialized by randomly sampling from
Gaussian distribution N(0, 0.012). Similar to [26], the core
visual model is denoted as Image - C96 - P - N - C256 -
P - N - C384 - C384 - C256 - P - F4096 - F4096 - F128.
To train the neural networks, we first fixed the parameters of
the core visual model and updated the other parameters only.
After the loss came to be stable, we set a small learning rate
to update the core visual model as well while we observed
very limited performance improvement by updating the core
visual model.

C. Qualitative Analysis on the Learned Representations

The learned representations encode both the explicit con-
nections and the implicit connections among the vertices in
the click graph. In this subsection, we give some qualitative
examples to show the semantic similarities of the learned word
representations and how the learned representations help to
improve the search experience by correcting misspelling words
and re-ranking images.

1) Word Representations: We first investigate the learned
word representations. Traditionally, a word is represented by a
high-dimensional one-hot-spot vector. In this work, each word
is learned to be associated with a low-dimensional continuous
vector in the word look-up table. One simple way to investigate
the learned representation is to find the closest words for a
specific word. As shown in Table III and Table IV, we compare
the learned word representation of the proposed MRW-NN and
the ranking-based comparative method CMRNN [25] by find-
ing the closest words of france (name of country), shanghai
(name of city), huawei (name of brand), ps4 (PlayStation4,
a game device) and nba (National Basketball Association).
Reminding that MRW-NN considers the implicit connections
among the queries while CMRNN only considers the explicit
query-to-image connections, MRW-NN has more potential
to capture the relationship among words appearing across
different queries. For example, the closest words to shanghai
learned by MRW-NN are the other cities like Seattle and
New York City, while those that learned by CMRNN are
related concepts to the city like fleet and arena. The similar
phenomenon is also observed for the word ps4. To give
more insights, the closest words that learned by the word2vec
model [27] is shown in Table V, which is trained on part of
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TABLE III

MRW-NN: THE CLOSEST WORDS AND THEIR SIMILARITIES FOR GIVEN WORDS (MEASURED IN COSINE DISTANCE)

TABLE IV

CMRNN: THE CLOSEST WORDS AND THEIR SIMILARITIES FOR GIVEN WORDS (MEASURED IN COSINE DISTANCE)

TABLE V

WORD2VEC: THE CLOSEST WORDS AND THEIR SIMILARITIES FOR GIVEN WORDS (MEASURED IN COSINE DISTANCE)

TABLE VI

MISSPELLING WORDS FOR GIVEN WORDS

Google News dataset with about 100 billion words.3 We can
see that the closest words learned by MRW-NN and word2vec
are very different. To take ps4 as an example, in an image
retrieval system, users that search ps4 may be more likely to
search images for playstation and xbox (closest words learned
by MRW-NN, both are game devices), but much less likely
for bf3 and halo3 (closest words learned by word2vec, both
are game names).

Though we do not observe the additive compositional-
ity for performing analogical reasoning (e.g., vector(king) −
vector(man)+vector(woman) = vector(queen)) on the learned
word representation, the word representation learned from the
click graph allows other interesting applications. Contributed
to mining the implicit connections among the queries, the
learned word representation can be another cue to correct
the input misspelling words, besides the traditional cues like
Edit Distance. Table VI shows some misspelling words and

3https://code.google.com/p/word2vec/

TABLE VII

QUERY-TO-QUERY SUGGESTIONS

their corresponding correct words, where the correct words are
found from the nearest neighbors of the misspelling words in
the latent space (by filtering out those words in dictionary).
Another application is query-to-query suggestion: given a
query, find the other queries that the user might like to submit.
Table VII shows some query suggestions by finding the closest
queries to the input query in the latent space.

2) Image Representations: Though the clicked images are
in general relevant to the corresponding query, the noises exist
in the Clickture (in a relatively low level). Some images may
be clicked by mistake as they attracted users’ attention for
whatever reason (e.g., very unique or strange images, even
though they are not relevant to the current query). One of the
interesting property of the learned representation is that the
learned representation is more robust to noise than the mere
click count based ranking. We present some query examples
(animal best, beer and dell computer) in Figure 4. For exam-
ple, as search engines typically show images indexed by the
surrounding text in the same page, the top clicked images to
the query dell computer involve other Dell related images like
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Fig. 4. Ranking comparison on the training data. For each query,
top 10 images are returned. The upper ranking list is simply sorted by the
click count of the query-image pairs (which may be noisy) and the lower list
is sorted by the cosine similarity of the learned representation between the
query and the images. The images in red indicate that the images may be
irrelevant to the corresponding query.

the logo of Dell as well. In the proposed method MRW-NN,
the latent representation is learned in a way considering the
content of the image. Thus in the latent space, an image that
consists of computers is closer to the query dell computer than
those that consists of logos only, accordingly having a higher
rank position.

D. Cross-Modal Retrieval Performance Comparison

One important characteristics of MRW-NN is that it can
deal with those queries and images that do not appear in the
training click graph, which allows the proposed method to
perform cross-media retrieval on the unseen data by mapping
the unseen data into the latent space. We compare MRW-NN
with the other state-of-the-art methods for cross-modal
retrieval performance evaluation on the Clickture dev set.
More specifically, the text-query-image in cross-media retrial
is compared [34], [35].

1) Comparative Methods: The comparative methods are
elaborately chosen for the fair comparison, which includes
paired-based methods (BoWDNN-R and CCL) and ranking-
based methods (PAMIR, PSI and CMRNN). The comparative
methods are listed as following:
• BoWDNN-R (Bag-of-Words similarity based ranking

method [36]). The idea of this method is to measure
the image-query relevance based on the cosine similarity
between the query BoW representation and the image
BoW representation learned by a proposed BoWDNN
which maps the image to the high-dimensional (50,000D
in their settings) text space.

• CCL (Click-through-based Cross-view Learning [7]). The
training of CCL is performed simultaneously by mini-
mizing the distance between query and image mappings
in the latent subspace weighted by theirs clicks, and
preserving the structure relationships among the training
examples in the original feature space.

• PAMIR (Passive-Aggressive Model for Image
Retrieval [8]). Passive-Aggressive model measures the
match between a query and an image by first projecting

TABLE VIII

COMPARATIVE METHODS: THE COMPLEXITY OF
CALCULATING RANKING SCORE

TABLE IX

THE DCG@25 (%) OF THE COMPARATIVE METHODS

Fig. 5. Sensitivity of the parameter C with best value C = 0.0001.

the query into the image space with optimization for
text-query-image pairwise ranking loss. The click count
is used to measure the ranking priority of an image
given a query.

• PSI (Polynomial Semantic Indexing [37]). A little dif-
ferent from PAMIR, a polynomial ranking model with
2-degree projection of the image and the query into a
latent subspace with the aim of optimizing for the margin
pairwise ranking loss.

• CMRNN (Cross-Model Ranking Neural Network [25]).
Similar to the proposed MRW-NN, CMRNN takes
two modality-specific neural networks for mapping the
queries and the images into a common subspace, while
it optimizes the listwise ranking loss of the cross-modal
ranking examples.

All the comparative methods first compute the similarities
between the query and the images, and then rank the images
by their similarities in descending order. For BoWDNN-
R, CCL, PAMIR and PSI, we compare the reported results
in [36] and [38] for the MSR-Bing Image Retrieval Challenge.
For CMRNN and the proposed MRW-NN, we train the models
respectively on an Nvidia GTX Titan GPU. It takes about
10 hours to train the MRW-NN model. In the production
environment for cross-modal retrieval, the test time for each
query is more crucial. Given the comparative methods, the
runtime complexity of computing the relevance similarity is
given in Table VIII (the time of sorting are all the same).

2) Evaluation: For the evaluation of cross-modal ranking,
we adapt Discounted Cumulative Gain (DCG) [39] which
takes into account the measure of multi-level relevance degree
as the performance metrics. Given an image ranked list,
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Fig. 6. The relative improvement of the proposed MRW-NN to CMRNN over the dev set. For example, Relative Improvement@10 means that among all
the top 10 returned results (given different queries), MRW-NN ranks 46 excellent and 14 good images more than CMRNN (and thus 60 bad images less than
CMRNN).

the DCG score at the position of p is defined by:

DCG@p = Z p

p∑

j=1

2r j − 1

log(1+ j)

where p = 25, Z p = 0.01757 and r j = {Excellent = 3;
Good = 2; Bad = 0} is the manually judged relevance for
each image with respect to the query. At last, the average of
the DCGs on all the queries is the final evaluation result. The
higher the DCG score, the better retrieval performance.

The DCG performance of cross-modal retrieval
over 1,000 queries in the Clickture dev set is reported
in Table IX, showing that MRW-NN outperforms all the
comparative methods including paired-based methods and
ranking-based methods. The sensitivity of parameter C is
shown in Figure 5. It is also worth noting that the second
best performing method BoWDNN-R has a different structure
of neural network and a much higher test time complexity
(see Table VIII). The relative improvement of the proposed
MRW-NN to CMRNN on the top 25 ranking positions is also
reported in Figure 6. Each (x, y) in the figure means that
MRW-NN ranks y excellent or good images than CMRNN
in the top x returned results (y > 0 means that MRW-NN
has better performance). It is observed that MRW-NN ranks
more relevant (excellent and good) images than CMRNN in
every position of ranking list, showing that the improvement
is consistent.

We also note that the performance of all the comparative
methods are far to be perfect. One type of failure cases comes
from the unseen words out of the training vocabulary, where
41 queries out of all the 1,000 queries cannot be recognized.
We demonstrate some examples of the cross-modal retrieval
results on the dev set in Figure 7, which contains both good
and bad cases that MRW-NN performs. Take as an example
the query sunflower live show 2010. MRW-NN ranks the plant
sunflowers at the top while sunflower live show here is a proper
noun, which suggests MRW-NN should find out a way to better
understand the users’ input queries.

The proposed model could be also effective in the applica-
tion of image-to-text annotation. We give three examples of
annotation in Figure 8. Given an image, the words are ranked

Fig. 7. Cross-modal retrieval performance comparison between CMRNN and
MRW-NN. The images with green indicate the image is relevant (Excellent
or Good) to the corresponding query. Both good and bad cases are reported.

Fig. 8. Annotation of exemplar images in the Clickture dev set. Top 10
nearest words to the images in the latent space are listed including misspelling
words as well.

according to their cosine similarities to the image in the latent
space. The top 10 ranked words are listed for each image from
the dev set, while including some misspelling words as well.
It is also observed that the annotation results are diverse (for
example, the third sphinx image).

V. CONCLUSIONS

In this work, we have presented a new approach to learning
latent representation of the multimodal data from a click
graph. By the minimization of the random walk error and the
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regularization penalty from the output of the modal-specific
neural networks, the learned model has the ability not only to
represent the explicit connections and the implicit connections
of the vertices in the click graph with low-dimensional contin-
uous vectors, but also to map the unseen queries and images to
the latent subspace to support cross-modal retrieval. We have
demonstrated the effectiveness of the learned representation by
the proposed method MRW-NN and shown its superior to the
comparative methods on cross-modal retrieval on a large-scale
click log dataset.
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